If it's not what You are looking for type in the equation solver your own equation and let us solve it.
j^2-20j=-49
We move all terms to the left:
j^2-20j-(-49)=0
We add all the numbers together, and all the variables
j^2-20j+49=0
a = 1; b = -20; c = +49;
Δ = b2-4ac
Δ = -202-4·1·49
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{51}}{2*1}=\frac{20-2\sqrt{51}}{2} $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{51}}{2*1}=\frac{20+2\sqrt{51}}{2} $
| 4+14s-3=9s+38 | | 12n-8=28 | | 25432=x+.05x | | 6n+7-2n-14=4n+1 | | m/40=800 | | X/2-x+6/11=3 | | 4=3n-8 | | 5w-4=36 | | -23+9x=8x+7 | | 12x-154=-x+54 | | -47-(-44)=x/12 | | -4x-72=33-11x | | 3y-14=9y+4 | | -60=7x-3 | | 13x-115=-10x+230 | | 9=-6k-15 | | 1-0.1=w | | 7y-1=y+17 | | -57+6x=53+11x | | -10w=-6w+20 | | x×0.9-6.3=4.5 | | -9(t+3)=45 | | 5y=-4y-72 | | 3(5x-3)+3(6-2x)-4(2x+3)=-7 | | 5-5v=20 | | 11y=9y-8 | | 16-12=2(x-5) | | -3x+33=-75 | | 7/4x-72=180 | | 4.6q-2.1-5.9q=0.3q-2.1 | | 34+5y-8=17y-9-5y | | 1x+240=80 |